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Recent work by Hall and Vinen has established that mutual friction between 
the normal and superfluid components of liquid helium 11 is caused by inter- 
actions between quantized vortex-lines and the normal fluid. If the mean 
separation of the vortex-lines is small compared with the channel width, the 
general character of the flow may not depend on the discrete nature of the lines 
except in so far as this is the cause of the mutual friction. Equations of motion 
are developed which refer to components of the velocity field with a scale large 
compared with the line separation, and these are used to discuss the nature of 
possible turbulent motions. Reasons are given for believing that isothermal 
flow is very similar to that of a Newtonian fluid, and the theory is developed for 
turbulent pressure flow along a channel and a circular pipe. The predicted varia- 
tion of flow rate with pressure gradient is in good agreement with experimental 
measurements for Reynolds numbers (based on tube diameter and normal fluid 
viscosity) above 1400, and it is likely that turbulent flow can exist only above 
this critical Reynolds number. For Reynolds numbers which are not too small, 
the equations of motion apply to steady ‘laminar’ flow and these lead to a rela- 
tion between flow rate and pressure gradient in reasonable agreement with 
experiment. 

1. Introduction 
The flow properties of liquid helium can be described in some detail by the 

two-fluid theory that assumes the liquid to be an intimate mixture of two 
components each capable of independent movement. One, the normal fluid, is 
a ‘gas’ composed of the thermal excitations (phonons and rotons) moving 
randomly through the whole liquid, and it may be accelerated by ordinary 
viscous forces of the gas-kinetic type. The superfluid contains the residual 
momentum and kinetic energy of the liquid and behaves as a perfect fluid at 
absolute zero without entropy or viscosity. Using the model in this form it is 
possible to describe quantitatively the flow of liquid helium 11 at not too high 
speeds, the essential properties being the inviscid behaviour of the superfluid, 
the free interpenetration of the two components and the thermodynamic mutual 
force which drives normal fluid down temperature gradients. 

If the superfluid has zero viscosity, it  should be impossible to set it  in rotation 
from a condition of rest, but this can be done and the explanation of this anomaly 
is found in the theoretical result of Feynman (1955) that circulation is quantized 
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in units of h/m (h  is Planck's constant, m is the mass of a helium atom) and in the 
inference that vorticity is localized in vortex-lines of diameter comparable with 
the interatomic spacing. Once vorticity is introduced into the superfluid it can 
be increased by elongation of the lines in a kind of turbulent flow and, although 
most of the superfluid will be in irrotational motion, the motion induced by the 
vortex-lines will appear rotational on the macroscopic scale. Hall and Vinen 
have made an important extension by pointing out that the excitations of the 
normal fluid will be scattered in the velocity field of the vortex-lines and that 
this will cause a mutual friction if the vortex-lines are moving relative to the 
normal fluid. In  a series of papers they have presented very convincing evidence 
in favour of the notion that mutual friction between the two fluids is entirely 
caused by this effect (for details, see Hall (1960)). The existence of a mutual 
friction provides the simplest explanation of the existence of a critical flow 
velocity above which the simple two-fluid theory is no longer valid. 

The development of a flow in which all the vorticity is concentrated in discrete 
lines is a difficult mathematical problem, but many of the difficulties are avoided 
if we consider only those aspects of the flow that can be described in terms of 
averages over regions of space large enough to contain a substantial number of 
vortex-lines. The purpose of this paper is to construct such a continuum theory 
of the rotational flow of liquid helium rr, including only those effects of con- 
centrated vorticity that appear in these space averages. It is hoped that in this 
way knowledge of the turbulent flow of Newtonian fluids can be applied to the 
flow of liquid helium, although it is possible that significant effects take place 
on scales too small to be described by a continuum theory. 

2. The continuum equations of motion 
I n  detail, the motion of the superfluid is the result of a distribution of vortex- 

lines moving in their own velocity field and acted on by mutual forces, and a 
Fourier analysis of the whole velocity field would contain both components of 
small wave-number which represent streaming of large numbers of vortex-lines 
and components of large wave-number representing the velocity fields around 
individual vortices. If each line were split into two and the parts separated by 
half the previous spacing, considerable changes would be expected in the large 
wave-number components but very small changes in the components of small 
wave-number, so we identify the small wave-numbers with the continuum 
aspects of the flow and use them to define the part of the flow obeying equations 
of motion of classical type. The largest wave-number belonging to the continuum 
spectrum may be estimated by considering the dependence of the velocity field 

(2.1) 

on the length 6. q,(xfr) is the true velocity field and q,(x+r) is roughly the 
average velocity in a spherical volume of radius 1.556 surrounding the point x.t 

t Effective volumes and areas have been estimated by approximating the error function 

, defined by 
qa(x) = (27r)-% 6-3 qt(x + r) e-+(@/8')dr7 s 

by a 'top-hat' function of equal volume or area. 
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If a moderately large number of vortex-lines pass through this volume, the 
average velocity will not be sensitive to the individual velocity fields of the lines 
but will be determined by their combined effect and by the effect of neighbouring 
lines. Supposing four to be a moderately large number, q,(x) is essentially a 
continuum average if 2 4  

, 

where L is the number of lines per unit area (or length per unit volume) and 8, 
may be used in (2.1) to define the continuum field of velocity. In  terms of 
Fourier components, it is easily shown that only spectral components of wave- 
number less than 

k, = 1.55 (;)% NN 2 ( q  (2.3) 

may be considered to belong to the continuum spectrum, i.e. the spectrum of 
the velocity field q,(x). 

Using these space averages to define flow variables for both components, the 
equations of motion may be obtained. Omitting terms involving changes in 
density, they are 

for the superfluid, and 

3, + (qn . grad) qn = - gradp - - 1 F,, + - vn V2qn 
at Pn Pn 

(2.5) 

for the normal fluid.? The quantity pa in (2.4) represents the momentum flux 
due to the pressure and velocity fields of individual vortex-lines, and is of order 
w,h/m.$ The relatively high viscosity of the normal fluid makes it unlikely that 
the corresponding term is appreciable in the equation for its motion. The mutual 
force Fs, is the sum of the thermodynamic force proportional to the averaged 
temperature gradient and the volume average of the mutual forces arising from 
the scattering of excitations by the vortex-lines. The scattering calculations of 
Hall & Vinen (19563) show that the mutual friction has two components, a drag 
force in the plane of the vortex-line and the relative velocity and a lift force 
normal to this plane, both proportional to the strength of the vortex-line and to 
the relative velocity. If the lines within the volume defined by 8, are jumbled 
and random in direction, the average of the lift forces will be zero and the average 
of the drag forces will be parallel to the averaged relative velocity and pro- 
portional to the length of line per unit volume. Allowing for the random orienta- 
tion, the total mutual force is 

Fsn = 8 g a d  T + BPsPn ws(qn - qs), (2.6) 

t In  these and all subsequent equations, the pressures, forces and viscosities are 
‘kinematic’, i.e. they are the ordinary quantities divided by the total density of the fluid. 
ps and pn are then the mass fractions of the two components and p s f p n  = 1. 

$ Hall (1960) has shown that the vortex-lines are in a state of tension, which is really 
the longitudinal effect of the radial pressure gradient necessary to maintain rotation of 
fluid particles about the line. The tension (in the form of the pressure component) is 
included in pn. 

8-2 
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where o, = Lh/m is the vorticity of the superJuid, and B is a function of tem- 
perature and nearly equal to one-third of the constant determined by measuring 
the attenuation of second-sound in rotating liquid helium (Hall & Vinen 1 9 5 6 ~ ) .  
This form for the mutual friction should be valid in turbulent flow but it needs 
modification if the vortex-lines are not randomly orientated (see 0 5). 

To these dynamical equations must be added the equations of state, of con- 
servation of mass and of conservation of energy, but in isothermal flow at speeds 
small compared with either velocity of sound, changes in total density or in 
mass fraction of the components are expected to be negligible and we have 

div q, = div q, = 0. (2.7) 

To make the set of equations formally complete, it  is necessary to find some 
relation between the superfluid vorticity o, and the velocity field. If the vortex- 
lines had long-range order, i.e. adjacent lines nearly parallel, the superfluid 
vorticity equals the continuum vorticity, lcurl q,l , but this is unlikely to be true 
in general and it is necessary to discuss the processes of generation and destruc- 
tion of superfluid vorticity. 

If an ordinary Newtonian fluid is in turbulent flow, distributed vorticity is 
continually generated by stretching of the vortex-lines and is being destroyed 
at the same rate by the action of viscous forces. In  a superfluid, vortex-lines 
can only be destroyed if they approach the wall or another, oppositely directed 
line within a few atomic diameters, but they can lose energy to the normal fluid 
without any need for such a close approach. The rate of energy loss depends on 
their density and their mean square velocity with respect to the normal fluid, 
which is also proportional to the density, and this kind of argument suggests 
that it is not necessary to discuss the mechanism of vortex-line destruction in 
detail. The problem may then be reduced to the part played by the vortex-lines 
in dissipating energy supplied to the flow, and the first step is to obtain equations 
for the kinetic energies of the turbulent fluctuations in the two components. For 
fully developed flow between parallel planes, these equations are 

for the superfluid, and 

for the normal fluid. In  these equations, the Ox axis is parallel to the direction of 
flow and the O y  axis is at right-angles to the planes; the mean velocity has com- 
ponents ( U ,  0, 0 ) ,  the velocity fluctuation is (u, w, w) and q2 = u2 + v2 + w2. 
6, is the energy dissipation by viscous forces in the normal fluid and e, is the rate 
of loss of superfluid energy by transfer to scales of motion too small to contribute 
to the averaged velocity field. Similar forms may be derived for other kinds 
of flow. 

An important difference between these equations and the corresponding 
equation for a Newtonian fluid is that mechanical energy can be lost to the 



A continuum theory of the isothermal $ow of liquid helium 11 117 

system by mutual friction as well as by working against viscous retarding forces 
and that, while viscous losses hardly affect the large energy-containing eddies of 
the motion (for example, see Townsend 1956), this is not necessarily true of the 
mutual friction. Whether mutual friction affects the large eddies or not depends 
on the degree of correlation between the velocity fluctuations in the two fluids, 
and we consider the two extreme possibilities, (a)  negligible correlation defined by 

and ( b )  nearly perfect correlation defined by 
(2.10) 

(2.11) 

If the correlation is negligible, the mutual friction acts as a damping force but, 
if it  is large, the mutual friction couples the motions together and the damping 
effect is relatively small. 

In  the energy equation for the superfluid fluctuations, the term 

represents transport of energy from one part of the flow to another and it is known 
to be comparatively small in channel flow (Laufer 1955). Omitting this term and 
assuming negligible correlation, we find that 

(2.12) 

and so the superfluid vorticity must be comparable with the vorticity of the mean 
flow. In  turbulent flow, fluctuations of vorticity are typically large compared 
with the vorticity of the mean flow, and this suggests what the following analysis 
confirms, that independent velocity fluctuations in the two components are in- 
compatible with isothermal turbulent flow and that the energy-containing eddies 
are almost perfectly correlated and coherent. The extent to which this coherence 
of motion extends to the small-scale components of the motion is considered in 
the next section. 

3. Spectrum of coherent turbulent flow 

ence in mean velocity, the velocity fluctuation would satisfy the equation 
If the velocity fields of the two components were identical except for a differ- 

which is exactly the equation of motion for an ordinary fluid of the same viscosity 
moving with the mean flow velocity 

urn = P s V , + P n K  

in the same mean pressure gradient. This equation describes any perfectly 
coherent flow but it contains no terms involving thermomechanical forces. It 
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follows that the turbulent motion observed during thermal flow of liquid helium 
is either of a scale too small to be described by a continuum theory or is funda- 
mentally incoherent. Compare this equation with the equation of motion for 
the superfluid in the absence of thermomechanical forces: 

On subtracting and equating qs to qn except in the mutual friction term, we obtain 
an approximate equation for the velocity difference in nearly coherent flow, 

To this approximation, the equation is linear and, in terms of the Fourier coeffi- 
cients of the velocity field, it  is 

- Bpnus(as - a,) = [ - v, k2 + il( V,  - Urn) pn] a, (3.4) 

where q = Xa(k)exp (ik.x), or 

where I is the component in the direction of mean flow of the vector wave- 
number k. Two conditions must be satisfied before essentially coherent motion 
is possible for the Fourier component of wave-number k: 

The first condition is inertial, requiring that the mutual force should be sufficient 
to supply the acceleration caused by relative motion of the superfluid and the 
pressure field, and to this approximation failure to satisfy the condition results 
in a difference in phase but none in magnitude. The second condition is in- 
dependent of the relative velocity and requires a mutual force sufficient to 
balance the viscous stresses in the normal fluid. Failure to satisfy the second 
condition implies a greater magnitude of the Fourier component of the velocity 
fluctuation in the superfluid. 

An essential process in any turbulent flow is the transfer of energy between 
eddies of different sizes, usually a transfer from large eddies to smaller ones, and 
it is usual to discuss this process in terms of the three-dimensional spectrum 
function E(k) ,  defined so that E(k)dk  is the fraction of the total energy $$ 
arising from Fourier components with magnitudes between k and k + dk (Bat- 
chelor 1953). So long as the conditions (3.6) are satisfied, the motion is coherent 
and the low wave-number part of the spectrum is expected to be identical with 
the spectrum of flow in a Newtonian fluid and to have the same characteristics. 
For the present purpose, the relevant characteristics are (i) that viscous dis- 
sipation of turbulent energy is concentrated at wave-numbers near k, = +(e/v3)4, 
where e is the rate at which energy is lost by the larger eddies to the dissipative 
processes, (ii) that, if the wave-number is large compared with the wave-numbers 
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characteristic of the energy-containing eddies, the motion at this wave-number 
is determined by the energy dissipation E and by the kinematic viscosity v,, and 
(iii) that eddies with wave-numbers near ks contain nearly all the vorticity. If 
these principles of local similarity are applied to a flow of liquid helium which 
is coherent at not too large wave-numbers, the statistical specification of the 
vorticity distribution in the superfluid depends on the rate of dissipation of 
mechanical energy, on the difference in mean velocity of the two fluids and on 
the physical properties of liquid helium. Dimensional considerations require 
then that the superfluid vorticity is given by 

h 
0," = E V ; ~  x function of (V, - U,)47 mv, (3.7) 

To make this expression more precise, it  is necessary to consider in more detail 
the transfer of energy from one Fourier component to another in the spectral 
range of coherent motion, in the range of incoherent continuum motion, and 
outside the continuum range. At first sight, there are a number of possibilities 
depending on the relative magnitudes of the wave-numbers defining the limits 
of coherent and of continuum motion, but in isothermal flow the limit to the 
coherent range is always set by the viscous condition. Then the existence of the 
velocity difference cannot affect the incoherent motion of the superfluid, and 
so the magnitude of the superfluid vorticity is independent of the velocity 
difference and equation (3.7) becomes 

w: = E V L 1 ,  (3.8) 

where V J V ,  is a function of h/(mv,) and Bp,, i.e. of temperature. 
The relative magnitudes that determine the ratio vJv,, are those of the limit 

of coherent motion k,, thelimit of continuum motionk, (defined by equation (2.3)), 
and the wave-number ks near which the coherent spectrum loses energy by vis- 
cosity. Their ratios are 

and, on using the rough values h/mv, = 10, Bp, = 0.05, appropriate to a tem- 
perature near 1-4"K, we find that there is a substantial spectral range of in- 
coherent motion (k,/k, = 2.8).  The continuum representation of the motion 
distinguishes between the part of the superfluid vorticity that is necessary to 
provide the averaged vorticity, curl q,, and the residual density of vortex-lines 
which is completely disordered. Since space averages are used in the definition 
of the continuum motion, 

which defines wd = (h /m)L ,  as the disordered component of the vorticity. 
Disorder in the distribution of vortex-lines causes each line to move relatively 
to its neighbours with a velocity of about 2h/md, where d is the mean spacing. 
From the magnitude of k,/k,, we expect the normal fluid to be too viscous to 
move with the disordered motion of the vortex-lines and the rate of working 

w," = (curl q,)2 + w;, (3.9) 
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against the mutual friction to be Bp,L,(2l~/rnd)~(h/m) per unit volume. Then 
the rate of energy dissipation by irregular motion of the vortex-lines is 

(3.10) 

where a is a constant of order one. The energy is the energy not dissipated by 
processes occurring in the continuum range of eddy sizes, and energy loss by 
mutual annihilation of vortex-lines is ignored. 

As the details of the dissipation process for Newtonian fluids are not known in 
any detail, the magnitude of vJvn will be left unspecified in the following sections. 
Notice that if the whole motion were coherent and all the energy were dissipated 
by viscous stresses, the superfluid vorticity would be (€/urn)*. Actually part of the 
total dissipation occurs in the incoherent range by mutual friction which is a 
less effective process than viscous dissipation and so more continuum vorticity 
will appear for the same continuum dissipation. In  the disordered motion, too, 
more vorticity is necessary for the same energy dissipation and it seems a fair 
inference that v, is less than un and more than aBpnh/n2m. 

4. Pressure flow between parallel planes 
In  fully developed flow between parallel planes, mean values of the flow 

variables become independent of displacement parallel to the boundaries and 
functions only of y, the distance from one boundary. For this flow, the equations 
of mean motion are - 

Ws = $+Bpnw,(Un-U,) 
aY 

and 

where 2 0  is the width of the channel and the pressure gradient in the direction 
of flow is -70/D. From these equations may be obtained the equation for the 
mean mass flow, a -  To d2Un 

- rPsusv,+pnull.] = - + v, -- 3Y D dy2 

and the equation for the difference of mean velocity, 

v, d2Un 
u v --,I = Bw,(U,-U,)+---- 5 [ T n  

a 
Pn dY2 

Equation (4.3) may be integrated to give the total stress, 

(4.3) 

(4.4) 

since 70 is the shear stress on either wall. 
Arguments have already been given indicating that the motions of the large- 

scale eddies are nearly coherent, and if this is true the mass flow will be similar to 
that of an ordinary fluid in a channel of the same width and in the same pressure 
gradient except near the walls where the flow is unlikely to be turbulent. The 
validity of this notion will now be tested by calculating the amount of incoherence 
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in the motion, but first it is useful to review the properties of channel flow as 
they have been established for Newtonian fluids. For values of 7; y/u greater 
than 20, the distribution of mean velocity is of the form, 

u = 2 P( y /D)  + q, (4.6) 

where U, is a velocity of translation that depends on details of the flow near the 
wall, the function P ( y / D )  is characteristic of channel flow in general and K is 
an absolute constant about 0.41. This velocity distribution defines the rate of 
production of turbulent energy, - G a U / a y ,  and this rate equals the rate of 
energy dissipation in the most important part of the flow, that for which 
y / D  < 0.2. In  this same region, P(y/D)  = log y / D  and so 

and the scale of the energy-containing eddies is nearly proportional to distance 
from the wall (Townsend 1956). 

It is now possible to estimate the magnitude of the departures from coherence 
in the liquid helium flow. The incoherence of the motions of the two components 
is given by equation (3.5), but the incoherence from inertial effects does not 
produce any inequality between u,V, and u T ,  the first-order effect beinga change 
of phase producing a small relative displacement of the velocity patterns. On 
the other hand, the effect of viscosity acting only on the normal fluid is to make 
velocities rather greater in the superfluid, and so 

where Ic, is the average wave-number of the Fourier components contributing 
to the Reynolds stress. Substituting in equation (4.4), we obtain a relation 
between w, and (Us - U,), 

Bw,(US-Un) (4.9) 

Using the relation (3.8), E = veu,2, and substituting for E ,  ke and dU,/dy the values 
for a constant-stress layer in ordinary flow, viz. 

r! dU =- ri 
Ky’ dy Ky’  

k,cc y-1, E = - - 

the ratio of the velocity difference to the scale of velocity variation ri is found 

U,-Un 3K4 to be 
-=- (key)4 (%)’ (2)”.-L (”)” (5)”. (4.10) 

r; B Pn V n  r 0 y  B~,K* V n  T ~ Y  

It may now be confirmed that no appreciable incoherence exists in the fluctua- 
tions contributing to the energy and the Reynolds stress. The inertial condition 
for coherent motion becomes 

(4.11) 
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and the viscous condition 

(4.12) 

Both these conditions are satisfied in that part of the flow for which 7-i ylv, is 
large, and this is the greater part of the channel if the Reynolds number of flow, 
R = T! D/v,, is large. 

The assumption of the previous section that the upper limit to the coherent part 
of the spectrum is set by viscous rather than inertial effects may also be con- 
firmed. Using equation (4.10), i t  may be shown that the ratio of the inertial 
cut-off to the viscous cut-off is 

(4.13) 

for large values of y/v,. At the same large values of y/vn, the mutual friction 
is 

(4.14) 

and it is small compared with the pressure gradient except very close to the wall. 
In  an ordinary fluid, a limit to fully turbulent flow is set by the damping action 

of the viscous forces which prevent an appreciable level of turbulent motion for 
values of 7 iy /vn  less than 12, and the additive constant in the velocity distribu- 
tion (4.6) is determined by a condition of velocity continuity at the boundary 
between the fully turbulent flow and the effectively laminar flow next the wall. 
If the fluctuations in liquid helium were everywhere coherent, the same viscous 
forces would exist and impose the same limit to the region of fully turbulent flow, 
but the conditions for coherent flow, (4.10-12), show that it will not be possible 
for some values of 7: y/vn greater than 12 if Bp, is small. Then the turbulent 
motion in this wall region is incoherent to some extent and the levels of turbulent 
intensity and Reynolds stress will be reduced because of added dissipation by 
mutual friction. To a rough approximation, we may use the viscous condition 
for coherence (4.12) to set a limit, yv say, to the region of negligible Reynolds 
stress so that 

(4.15) 

where x is a constant. This can only be valid if yv is much greater than the 
ordinary limit, 12vn/7t. Applying the condition of velocity continuity at the 
edge of the region of negligible Reynolds stress, the universal velocity distribu- 
tion (4.6) takes the form 

(4.16) 

where C is given by 
c = K---log-. d Y v  4 Y V  (4.17) 

V n  V n  

For a Newtonian fluid, rty7,/vn x 12 and C x 2.3. 
It has been shown that the mass flow velocity in the fully turbulent part of 

the flow has the same distribution as for an ordinary fluid except for a modified 
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velocity of translation. Within the wall layer of negligible Reynolds stress, the 
flow is steady and analysis of this kind of flow ( $ 5 )  shows that the velocity differ- 
ence is nearly 2vn/(3Bp,D) and the total flow in the wall layer is negligible for 
Reynolds numbers in the turbulent range. The volume flow may then be cal- 

where ( R  = rtD/v,). This relation between volume flow and pressure gradient 
is valid for flow along a tube of circular section with a suitably modified con- 
tribution from the integral of the distribution function P(z). 

The arguments set out here may be applied to any kind of isothermal tur- 
bulent flow and it seems that the continuum theory of turbulent flow in liquid 
helium 11 leads to the conclusion that its macroscopic structure is nearly indis- 
tinguishable from ordinary turbulent flow if the Reynolds number is large. This 
is not true for thermal flows in which the motion is essentially incoherent or for 
steady flows with vortex-lines. . 

5. Steady flow with vortex-lines 
Many experimental measurements of flow resistance in tubes and channels 

have been made for Reynolds numbers between 10 and 50 and, although it is 
unlikely that the flow can be turbulent, the observed resistance indicates a 
sufficient density of vortex-lines for approximate validity of the continuum 
theory. It is natural to assume that the flow is steady and that the flow of the 
superfluid is retarded by mutual friction between the normal fluid and a steady 
stream of vortex-lines, generated perhaps near the channel entrance.t The 
continuum equations for steady flow between parallel boundaries are 

the factor # appearing because the vortex-lines are all at right-angles to the flow 
direction and not randomly orientated as in turbulent flow.$ Then, 

and the velocity difference between the superfluid and the normal fluid, 
77, = Us- U,, is given by 

(5.3) 

t The existence of such a flow is not certain. 
1 In steady flow the lift forces are all in the same direction and do not disappear when 

the averaging process is carried out, but their only effect is to induce a lateral pressure 
gradient. 
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with a boundary condition that depends on the nature of the interaction between 
the material of the wall and the liquid. The discussion of this boundary condition 
raises the same questions of the generation and continued existence of vortex- 
lines as arise from the existence of a critical velocity of flow. Without going into 
any detailed discussion it seems reasonable that there should be a layer of fluid 
next the wall not containing vortex-lines and moving with the critical velocity 
U, appropriate to its thickness do. Measurements of critical velocity suggest 
that these are related by 

U,d, = bh/m, (5.4) 

where j3 is a number varying slowly with channel width. Consider now the forces 
acting on the layer of fluid next the wall and of thickness do + Bd,, where dl is 
the mean separation of vortex-lines at the edge of the continuum flow. On the 
average, this layer is not accelerated and the pressure gradient is balanced by 
the mutual friction on the vortex-lines in the layer of thickness +al, so that 

where Unis the normal fluid velocity at distance do from the wall. The mean separa- 
tion of vortex-lines is related to the velocity gradient at distance do from the wall 

so that these two equations provide a boundary condition. 
Although solutions of equation (5.3) with this boundary condition could be 

computed, the essential features of the flow can be discovered by making suitable 
approximations. Near the wall, y / D  Q 1 and the solution is 

where A ,  is a constant of integration determined by the boundary condition. 
This solution implies that the difference velocity approaches asymptotically 
the value 2vn/(3Bpn D)  but the final approach to the asymptotic solution requires 
more detail in the distribution of vorticity than can be provided by vortex-lines 
of finite strength. A continuum flow consistent with the physical requirements is 
one with the asymptotic difference flow to within a distance do of the wall and 
a critical flow in this layer. The condition for the validity of the asymptotic 
solution is that dU./dy << ro/v,, or 

and in that part of the channel for which (1 -y/D)3 9 ($BpnR2)-l, the solution 
may be continued as 

u, = ___ 2vn (1 - y/D)-l. 
3Bpn-D 

For still larger values of y /D,  an approximate solution is 

$Bp, U,2 = T Y  $ +constant. 
(5.9) 
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Using these approximate solutions in their ranges of validity, the difference 
flow in a channel may be calculated. It is 

(5.10) 

where A' depends on the transition between the regions of validity of (5.8) and 
(5.9) and is probably about one. In  non-dimensional form, the volume flow is 

(5.11) 

These calculations have been made for flow between parallel planes but the 
extension to flow along a tube of circular cross-section is straightforward. In 
a tube of radius a, the wall stress is related to pressure gradient by 

dP 
2ro = -a-, 

ax 
and the volume flow is given by 

(5.12) 

where Q, is the mean flow velocity of the whole liquid and the Reynolds number 
is defined by R = rtalv,. 

These calculations refer to flow at comparatively large Reynolds numbers 
such that *BpnR2 > 10 and it is less easy to find explicit expressions for flow at 
lower Reynolds numbers within the continuum range. A very rough approxi- 
mation is to neglect the motion of the normal fluid so that the solution of 
equation (5.3) is 

(5.13) 

and to use this solution for values of y greater than do, the distance from the 
wall of the first vortex-lines. An application of the boundary condition expressed 
in equations ( 5 . 6 5 )  leads to a slip velocity of 

(5.14) 

if the normal fluid velocity is zero and the total volume flow may be calculated. 
It is given by 

which has meaning only if 

corresponding to do < D. Experimental measurements of critical velocity and 
flow resistance in wide channels suggest that /3 is of order 10, so that this theory 
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can only apply at Reynolds numbers greater than about three (for Bp, w 0.05). 
On the other hand, neglect of the motion of the normal fluid is only possible if 
U,Dlvn 4 2/(3Bp,), corresponding to sub-critical flow rates at temperatures 
between 1.2 OK and the A-point. 

6. Comparison with measurements of flow resistance 
The continuum theory of the flow of liquid helium 11 assumes that the macro- 

scopic properties of the flow are determined by the pressure gradient, by the 
dimensions of the channel and by the properties of the liquid that can be 

1 I 1 1 I I 1 I 

V 

300 - 

200 - . 
U 

100 - 
-,A 

1 

OO 10 18 
R 

FIGURE 1. Reynolds number plot of flow measurements by Atkins (1951) at low Reynolds 
numbers. 

a= 0.131 x cm 0.408 x ern 1.02 x lo-' ern 
T = 1.22OK A A a 
T = 1-52OK V v .I 

expressed by the quantities h/m, v,, pn ,  B, which are either non-dimensional or 
have the dimensions of viscosity. Dimensional homogeneity then requires that 
flows should be dynamically similar if the Reynolds number and temperature 
are the same, and in particular that the volume flow velocity should be related 
to the pressure gradient by 

where the function depends only on the flow ge0metry.t The only set of measure- 
ments that are suitable for a test of this prediction are some measurements of 

N.B. This is a test of dependence on the named quantities, not of the continuum 
theory a8 such. 
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FIGURE 2. Reynolds number plot of flow measurements by Atkins (1951) at moderate 
Reynolds numbers for comparison with equation (5.12). 0 ,  a = 0.408 x om; 
+ , a = 1.02 x 10-2 cm; 0 ,  a = 2.2 x cm. Arrows indicate lower limit to validity of 
equation (8.12). 
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flow along capillary tubes by Atkins (1951). Using tubes of four different dia- 
meters and measuring the rate of flow at two different temperatures, his measure- 
ments covered a range of Reynolds numbers from one to 300, i.e. from outside 
the continuum range to well within the range for turbulent flow. Points taken 
from his mean curves have been plotted in non-dimensional form in figures 1-3, 
and comparatively good agreement with the functional form (6.1) is found. The 
principal cause of irregular behaviour appears to be caused by uncertainty in 
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FraoRE 3. Reynolds number plot of flow measurements by Atkins (1951) at large Rey- 
nolds numbers for comparison with the logarithmic friction law (4.18). The lower line 
represents the mean of measurements for Newtonian fluids (Goldstein 1938). 

+ , a = 1.02 x 10-2 cm; 0 ,  a = 2.2 x 10-2 cm. 

the measured values of the tube diameter, as the discrepancies between points 
obtained with tubes of different diameters are of the same magnitude at both 
temperatures and show no consistent trend with tube diameter. On these results, 
there is no evidence that the absolute value of the diameter has any influence 
on the form of the relation (6.1) within the range of tube diameters 

0.262 - 4.4 x 10-2cm, 
and if there is a length characteristic of the mechanism of mutual friction 
(e.g. the core diameter of a vortex-line) it is likely to be rather less than the 
smallest of these diameters. 

Measurements at the smallest Reynolds numbers are shown in figure 1, most 
of them corresponding to average distances between vortex-lines larger than the 
tube radius. It is interesting that measurements with a Reynolds number less 
than four fall on the same curve at both temperatures (1.22' and 1.52 OK), but 
flow of the normal fluid must be very small in this range and a correlation of 
flow rate with normal fluid viscosity is very difficult to explain. Measurements 
at somewhat higher Reynolds numbers are compared with the steady flow theory 
of $ 5  by plotting (&,a/v,) - tR2  against R (figure 2). Equation (5.12) requires 
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that this difference flow rate should be independent of Reynolds number if the 
flow is steady and if $Bp,R2 > 10, i.e. if R exceeds 12 at 1.52 OK or 20 at 1.22 O K ,  

and this is approximately true for Reynolds numbers less than 50. Above this 
Reynolds number the apparent difference flow decreases rapidly, and i t  is 
natural to suppose that this abrupt change in the trend of the measurements 
corresponds to the growth of instabilities and the onset of turbulent motion. 
Confirmation is found by comparing the lower critical Reynolds number for 
flow of a Newtonian fluid which is 63. The difference and its sign might be ex- 
pected from consideration of the effect of slipping of the superfluid at the wall 
on the condition for critical stability of disturbances of the steady flow. 

In  fully developed turbulent flow, the ratio Q,/rt should be a linear function 
of log,,R with a slope of K-llog, 10 = 5.66 (see equation (4.18)), and this pre- 
diction is compared with the measurements in figure 3. Remembering that the 
division of the flow velocities by ri has removed the greater part of the variation 
with pressure gradient, it  may be claimed that experiment and theory are in 
good agreement. The additive constant in the logarithmic velocity distribution 
appears in the mass-flow equation and these results show that the constant C 
is larger in liquid helium flow than in air or water flow and increases as the 
temperature is reduced. Reasons have already been given to expect this 
behaviour but the magnitude of the variation is less than is given by equation 
(4.15). This is not unreasonable as the effective thickness of the wall layer is no 
more than 1.4 times the similar layer in a Newtonian fluid and the necessary 
condition that the extent of this layer is controlled by the mutual friction and 
not by viscous damping is hardly satisfied. 

More recently, Bhagat (1960) has made measurements of isothermal flow along 
a tube of radius 0.034crn at temperatures in the range 1-3-1.7 OK, mostly at 
Reynolds numbers sufficiently high to permit turbulent flow. The measurements 
were made by observing the rate of change of level difference between two 
vessels connected by the tube and Bhagat found the variation of this rate with 
pressure difference could be accounted for if 

where v , ~ .  depended on the initial pressure gradient and the constant velocity, w,,, 
varied from one experiment to another, increasing with initial pressure gradient. 
Validity of equation (6.2) implies that the flow is not quasi-steady and that the 
friction at any stage is not solely determined by the instantaneous flow velocity 
but depends strongly on the turbulence generated in the initial rapid flow. 
However, it  is characteristic of turbulent flows that the rate of adjustment to 
change is proportional to the rate of rotation of the eddies which must be large 
for fully developed flow in a small tube. So, although hysteresis and delay might 
be expected in the development of turbulent flow from an initial condition of 
very weak fluctuations, i t  is difficult to believe that this flow was not quasi- 
steady except at the very beginning. For the purposes of comparison with tlie 
theory and with the measurements of Atkins, it is unfortunate that Bhagat 
gives no details of the variation of vo and that it is difficult to decide the pressure 

9 Fluid Mech. 10 
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difference appropriate to the measured value of vcff.. In  figure 4, the variations 
of Q,/r! with R implied by equation (6.2) are shown for a number of initial pres- 
8ure differences, using assumed values of vo that are consistent with the quoted 
order of magnitude, 2cmsec-1, and with the observed trend with pressure 
difference. All the curves fall near the line representing the logarithmic resistance 
law for 1-52 O K  as inferred from Atkins's measurements, and the principal devia- 
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FIGURE 4. Variation of flow coefficient with Reynolds number according to Bhagat 
(1960) for various initial pressure gradients, assuming the values of wo shown in inset. The 
straight line is the logarithmic law for C = 3.5. (The points + , 0 ,  0 ,  refer to the initial 
gradient. one-half and one-quarter.) 

tions correspond to abnormally large rates of flow while the turbulence level is 
increasing. It also appears from this diagram that the observed values of vcff. 
probably correspond to steady flow at about half the initial pressure gradient. 
Assuming this, a more direct comparison is possible, by comparing the observed 
values of vCfe./vn with the values predicted by the logarithmic law, 

Reasonably good agreement is found, particularly at the lower temperatures 
(figure 5). 

7. Discussion 
This theory of the rotational flow of liquid helium depends on the demonstra- 

tion by Hall and Vinen that resistance to flow of the superfluid is due to frictional 
forces between the normal fluid and the vortex-lines of the superfluid, and it 
attempts to obtain an approximate solution of the flow problem by considering 
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only averages over volumes large enough to contain a substantial number of 
vortex-lines. This procedure is similar to the derivation of the Navier-Stokes 
equations from the kinetic theory of gases and within its proper limits this kind 
of approximation should be valid and useful. The important result of the calcula- 
tions in this paper is that it is possible to assume that the motions of the normal 

R (at one-half initial pressure head) 

FIGURE 5 .  Variation of effective viscosity with Reynolds number calculated from half 
the initial pressure gradient (from Bhagat 1960). The lines are the variations predicted by 
the logarithmic law for several values of the additive constant C. 0 ,  1.3"K; +, 1~5°K; 
0 ,  1-7'K. 

and the superfluid which contribute to the mean velocity and the Reynolds 
stress are almost perfectly coherent for turbulent flow in pipes and channels, 
the only region excepted from this being a thin layer next the walls. It is not very 
difficult to satisfy oneself that this will be true of any kind of isothermal flow and 
it appears that, if allowance is made for the peculiar properties of flow near a solid 
boundary, turbulent flow of liquid helium is very similar in its macroscopic 
aspects to turbulent flow of a Newtonian fluid. 

The large differences between the flow of liquid helium and the flow of more 
ordinary fluids appear at Reynolds numbers less than 50, and I have attempted 
to describe the flow for the larger Reynolds numbers in this range by assuming 
the flow to be steady with vortex-lines moving in the general direction of flow 
in a quasi-regular array. The possibility of this kind of motion in liquid helium 
is not obvious and careful consideration of the flow details will be necessary before 
this assumption can be accepted without reservation. Meanwhile, it  is interesting 
that the result that the excess of the superfluid flow over that of the normal 
fluid is, as the theory predicts, nearly independent of pressure gradient, and that 

9-3 
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the magnitude is consistent with the known magnitude of the friction constant 
B and with the assumption of a slip flow at the walls with the critical velocity 
appropriate to a channel of the same thickness. For example, measurements by 
Atkins at 1-52 OK give the product of slip velocity and layer thickness as 

125 5 30 x cm2sec-1, 

compared with values of ws,,,d in the range 80-130 x 10-4cm2sec-1 for wide 
tubes. 

Vinen (1957a-d) has shown conclusively that a heat current can induce 
something resembling turbulent motion in liquid helium and that the mutual 
friction is uniformly distributed across the channel. Simple considerations of 
the supply of energy to the ‘turbulent ’ motion show that fully coherent motion 
can obtain no energy from the heat flow, and it follows that the important 
processes of the flow take place on scales comparable with the mean separation 
of the vortex-lines. Until a continuum theory of incoherent turbulence driven 
by thermomechanical forces is available, there must be some doubt whether the 
thermal flow can be usefully described by a continuum representation. However 
thermal flow is described, it seems certain that it is a completely different 
motion to isothermal flow and that comparisons of mutual frictions will not be 
profitable. 

My interest in this subject was aroused by conversations with Dr H. E. Hall 
and Dr W. F. Vinen, and I am grateful for their help and criticism. 

REFERENCES 

ATKINS, K. R. 1951 Proc. Phys.  SOC. A, 64, 833. 
ATKINS, K. R. 1959 Liquid Helium. Cambridge University Press. 
BATCHELOR, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University 

Press. 
BHAOAT, S. M. 1960 Proc. Phys.  SOC. A, 75, 303. 
FEYNMAN, R. P. 1955 Progr. Low Temp.  Phys., vol. I, chap. 11. North Holland Publish- 

ing Co. 
GOLDSTEIN, S. (ed.) 1938 Modern Development in Pluid Dynamics, vol. 11. Oxford 

University Press. 
HALL, H. E. 1960 Phil .  Mag.  Suppl.  9, 89. 
HALL, H. E. & VINEN, W. F. 1956a Proc. Roy. Soc. A, 238, 204. 
HALL, H. E. & VINEN, W. F. 1956b Proc. Boy. SOC. A, 238, 215. 
LAUFER, J. 1955 N.A.C.A. Rep. no. 1174. 
TOWNSEND, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University 

Press. 
VINEN, W. F. 1957a Proc. Roy. Soc. A, 240, 114. 
VINEN, W. F. 1957b Proc. Roy. SOC. A, 240, 128. 
VINEN, W. F. 1957c Proc. Roy. SOC. A, 242, 493. 
VINEN, W. F. 19573 Proc. Roy. SOC. A, 243, 400. 


